2024 年度入学試験問題

数学

(90分)

注意事項

- 1. 試験開始の合図があるまで、この問題冊子は開かないでください。
- 2. この問題冊子は2ページあります。試験中、ページの脱落等に気づいた場合は、手を挙げて監督者に知らせてください。 解答用紙の汚れなどに気づいた場合も、同様に知らせてください。
- 3. 監督者の指示に従って、解答用紙(4枚)それぞれに受験番号、氏名を記入してください。
- 4. 解答は、すべて解答用紙の指定箇所に記入してください。
- 5. 筆記用具以外は、使用しないでください。
- 6. 試験終了後、問題冊子は持ち帰ってください。

(I)

- (1) a は定数とする. 2 次関数 $y=x^2-4ax+6a^2-a+14$ のグラフを x 軸方向に 5, y 軸方向に -7 だけ平行移動して得られるグラフの頂点が, 直線 y=2x 上にあるような a の値をすべて求めなさい.
- (2) $\pi \le x \le 2\pi$ のとき、関数 $y = \cos 2x 3\sin x 2$ の最大値と最小値を求めなさい。
- (3) $2^x + 2^{-x} = 3$ のとき, $\frac{16^x 16^{-x}}{2^x 2^{-x}}$ の値を求めなさい.
- (4) 不等式 $2\log_3(x-1) + \log_{\frac{1}{3}}(3-x) \ge 0$ を解きなさい.
- (5) 点(2,3) を通り, $\overrightarrow{n}=(4,1)$ を法線ベクトルとする直線の方程式を求めなさい.
- (6) 方程式 $z^6=1$ の解であって, 実部, 虚部ともに正であるものを α とする. このとき, α^{2024} の値を求めなさい.

- 〔 Π 〕 数列 $\{a_n\}$ を $a_3=-4$, $a_9=5$ である等差数列とし, 数列 $\{a_n\}$ の初項から第 n 項ま での和を S_n とする.
 - (1) 数列 $\{a_n\}$ の初項と公差を求め、数列 $\{a_n\}$ の一般項を求めなさい.
 - (2) S_n を求め、 $S_n > 0$ となる最小の自然数 n を求めなさい.
 - (3) $S_1 + S_2 + \cdots + S_n$ を求めなさい.
- [III] 1から9までの整数を1つずつ書いた9枚のカードが入った袋がある. 袋からカードを1枚取り出し、カードに書かれた整数を調べてから袋に戻す. この試行を4回繰り返し、1回目、2回目、3回目、4回目に取り出したカードに書かれた整数をそれぞれa,b,c,dとする.
 - (1) a > b かつ c > d である確率を求めなさい.
 - $(a-b) \times (c-d)$ が偶数である確率を求めなさい.
 - (3) a>b かつ c>d であるとき, $(a-b)\times(c-d)$ が偶数である条件付き確率を求めなさい.
- [IV] 原点を O とする座標平面上で、点 (3,1) を通り、傾きが t である直線を ℓ とする. 直線 ℓ と x 軸、y 軸の交点を、それぞれ P、Q とする. ただし、t<0 とする.
 - (1) 直線 ℓ の方程式を求めなさい.
 - (2) $\triangle OPQ$ の面積を t の関数として表しなさい.
 - (3) t が変化するとき、 $\triangle OPQ$ の面積の最小値と、そのときの t の値を求めなさい.